(CS3231 Theory of Computation notes

Aloysius
August 2025

Contents
1 Preliminaries 2
2 DFA, NFA, Regular expressions 2
2.1 DFA e 2
2.2 NFA e 3
2.3 Equivalence of DFA and NFA 0 e e 3
2.4 NFA e 3
2.5 Regular expressions e e 4
2.5.1 DFA to Regular Expression e 4
2.5.2 Regular Expression to e-NFA 5
2.6 Minimization of DFA L e 5
2.6.1 Minimization algorithm L 6
2.7 Properties of Regular languages L e 6
2.7.1 Decision problems e 6
2.8 Parallel simulation of DFA 6
2.9 Homomorphism L e e e e 6
2.10 Summary of proven statements Lo e e e 7
2.11 Languages known to be regular or irregular L L L 7
3 Context Free Grammars 8
3.1 CEG . o e e 8
3.1.1 Definitiono e 8
3.1.2 Derivation oL e e 8
3.1.3 Parsing e e 8
3.1.4 Linear grammart e e e e e e e e e e e e e e e e e e 9
3.1.5 Ambiguous grammars oo e e e e e e e e e e e 9
3.2 PDA . e 9
3.2.1 Imstantaneous description Lo e 9
3.2.2 Language acceptance Lo e e 9
3.2.3 Deterministic PDA L 9
3.3 Procedures e e 9
3.3.1 Generating symbols e e 10
3.3.2 Reachable symbols L 10
3.3.3 Useless symbols o Lo e 10
3.3.4 eproductionso Lo e e e 10
3.3.5 Unit productions e e e 10
3.3.6 Chomsky normal form oL 11
3.4 Properties Lo e e e e 11
3.4.1 Sizeof parse tree L L L e 11
3.4.2 Pumping Lemma oL e e 11
3.4.3 Ogdens lemma e e 11
3.4.4 ClOSUre . . . o o v o e 12
345 CYK . . o e 12
4 Turing Machines 13
4.1 Definitions o L e e 13
4.1.1 Languages and functions L e 13
4.1.2 Equivalent modelso e 13
4.1.3 Church Turing hypothesis e 13
4.1.4 Codings of turing machines e 14
4.2 Properties of languages oL e e 14
4.3 Universal Turing Machine 0 e 14
4.4 Non RE langs e 15

4.5 Reductions e e 15

4.5.1 TM accepting empty set L e 15

4.6 Rice’s theorem L L e 15
4.7 Undecideable problems L e 16
4.7.1 Post Correspondence Problem 16
4.7.2 Ambiguous Grammars it e e e e e e e e e e e e e 17
4.7.3 Further undecideable grammars e 17

4.8 Unrestricted grammar e e e e 17
5 Complexity 18
5.1 Time Space complexity L e 18
5.1.1 Time complexity e 18
5.1.2 Space complexity e 18
5.1.3 Time Space classes 18

5.2 Pand NP . . . o e e 18
5.2.1 Reducibility 19
5.2.2 NP Completeness e e 19
5.2.3 Some known NP Complete problems 19

5.3 Constant improvements Lo Lo e e e e 21
5.4 Some results 21

1 Preliminaries

Definition 1.1 (Alphabet). An alphabet is a finite, non-empty set of symbols, usually denoted by the symbol ¥. e.g.
{0,1},{4,B,...,Z},{0,A, s}

Definition 1.2 (String). A string is a finite sequence of symbols from an Alphabet, e.g. 001011, ABZSFAJF, 0AAAss. The
empty string is denoted as €

Definition 1.3 (Language). A Language is a set of Strings over an alphabet.

Definition 1.4 (Powers on an Alphabet). The nth power of an alphabet, ¥, is the set of all strings of length n over the
alphabet. Note that 3* represents all strings of finite length over the alphabet.

Definition 1.5 (Concatenation of Strings). String concatenation operator is -, but it can be dropped.
Definition 1.6 (Operators on Languages).

1. Ly - Lo =L1Ly={ay:x € L1,y € Lo}

2. I* ={x129...2p : x1,22,...,2, €E LLn €N} =e¢ULULLULLLU...

3. LT ={zza... 2y 121, 02,..., 2, € L,n >1}=LULLULLLU...

2 DFA, NFA, Regular expressions

2.1 DFA

A Deterministic Finite automata is defined by 5 things
1. A finite set of states, denoted as @)
2. A finite set of symbols from an alphabet X
3. A transition function, that takes a state from @ and a symbol from ¥, and returns a state from @, denoted as ¢
4. A starting state, qq
5. A set of final/accepting states, denoted as F'

For example, a DFA can be constructed to accept any string containing an odd number of bs
® 5(g0,a) = qo

L4 6(Q07b) =aq1

® i(q1,0) = q1
® 5(q1,b) = qo
§ is a function that takes in an initial state and a string, and accepts it if the DFA accepts the string.

Base case:

o(g,€) =q
Inductive case:

0(q, wa) = §(d(¢q,w), a)
Definition 2.1 (Dead state). A dead state is a state from which a final state can not be reached.

Definition 2.2 (Unreachable state). An unreachable state is a state ¢ for which Yw € ¥*, 5((]0, w) #q

2.2 NFA

A Non Deterministic Finite Automata is almost like a DFA, except it’s transition function maps to a subset of states in Q. In
practice, this means a state in a NFA diagram can have multiple arrows with the same symbol attached to it. This allows for
more compact diagrams.

2.3 Equivalence of DFA and NFA

Given any NFA, we can treat every possible subset of @) as a state in the DFA, such that Qp = {S|S C Q}. The set of final
states is the set of subsets of Q where there is at least one final state, Fp = {S|S C QA SN F # 0}. We can then define a
transition function for the DFA as:

6p(S,a) = Ugesdn (g, a).

Since an NFA can handle multiple states at once, this definition of a transition function basically simulates an NFA by finding
all the possible states the NFA can be in. This is known as the Powerset construction.

Powerset construction. Claim: For any string w, 6p({go}, w) = dn(qo, w)

Base case:

dp({qo},€) = {q0} = on(qo,¢€)

Inductive case:

5AD({qO}7 wa) = 50(5})({(10}7 w)7 a)
= 0p(On (g0, w), a)
= qué}v(qo,w)d(q’ a)

= 6;\/ (q07 wa)

O

Hence any NFA can be converted into a DFA, and it follows that an NFA can not be constructed to accept a Language that a
DFA can not accept.

2.4 NFA

An e-NFA is a NFA with a transition function that accepts empty strings, essentially it allows some states to have optional
transitions.

Definition 2.3 (Empty closure). The empty closure of a state in an e-NFA is the set of states reachable by taking any
amount of e transitions

1. g € Eclose(q)
2. p € Eclose(q) = Vk € d(p,€), k € Eclose(q)

3. Iterate step 2 until not more € transitions can be taken

The § of a e-NFA is defined as follows:

Base case:

0(q,€) = Eclose(q)

Inductive case:

d(q, wa)
First, find all the set of all possible ending states:
R = Upeg(q’w)é(p, a)

Then, the string transition function is just the empty closure of the ending states

0(g, wa) = UpegEclose(p)
Naturally, e-NFAs are equivalent to NFAs, which mean they are equivalent to DFAs as well. To convert an e-NFA to a NFA,
on (Q7 CL) = UpEEclose(q)Edose(ée(pv a))

2.5 Regular expressions

A regular expression is equivalent to a DFA, given an alphabet X, L(r) gives the set of strings accepted by the regular
expression. The grammar for a regular expression is as follows:

—_

€, where L(e) = {e}
2. 0, where L(0) =0
a, where a € ¥ and L(a) = {a}

- W

r1 + 12, given two regular expressions, their union is represented by +. L(ry +r2) = L(r1) U L(rg)
5. 11 - ro, given two regular expressions, their concatenation is represented by -. L(ry - r2) = {zy|z € L(r1),y € L(r2)}

6. r*, given a regular expression, its kleene star is represented by *. L(r*) = {x1zo... 2|Vl < i < k,x; € L(r)}. Note that
k can be 0, so 0 € L(r*)

7. (r), a regular expression wrapped around a paranthesis

Note that the precedence rule is * > - > +

2.5.1 DFA to Regular Expression

A DFA can be converted to a regular expression very easily. Given the DFA A = (Q,X,4,qo, F), and assume that
Q={1,2,...n} and go = 1. Let Rf’j be the regular expression that accepts the set of strings that moves the DFA from the
state ¢ to the state j, only using intermediary states numbered < k.

Base case, k = 0.
’ e+26(i7ai):iai, ifi=7

Induction case

Rﬁ}—l = Rf,j + Rﬁk+1(Rll§+1,k+1)*R1]§+1,j~
k.
(2%] I
k+1 (RiC k1), concatenated with any number of useless transitions ((R} 41.k41)"), concatenated with the regular expression
that takes k + 1 to j (R,lzﬂ’j).
Hence a regular expression equivalent to the DFA would be

> Ry,

jEF

The construction is simple, you take the regular expression for RY ., then union it with the regular expression that takes i to

2.5.2 Regular Expression to e-NFA

A regular expression can be converted to an e-NFA by applying some simple recursive transformations, which leads to an
e-NFA with the following properties:

1. It has only one final state
2. There is no transition into the final state
3. There is no transition out of the final state
4. The starting and final states are different
The transformation rules are as follows, note that if a state does not have a transition, it goes to a dead state.
1. 0: A= ({q90,9r},%,0,90,{qr}), where qo is a dead state.

2. e A= ({q0,49r},%,6,q90,{qs}), where §(qo,€) = gy is the only transition.

w

ca: A= ({g0,9r}, %, 6,90, {qr}), where 6(qgo,a) = ¢y is the only transition.

4. m1 + 719t Let A; = (Q1,%, 61,43, qjlc) and Ay = (Q2,3, 02, G2, qj%) represent the e-NFA for r1 and ry respectively. Our new
e-NFA combines these two, where A = ({go, ¢} UQ1 U Q2,%,6,q0,{qr}) and

* 0(qo,¢) = {a5, 45}
* (qf,€) = gy
* 0(¢},€) = qy
Additionally, § contains all the transitions of §; and d

5. 71 -7t Let A1 = (Q1,%, 01,45, qf) and Ag = (Q2,%, 2, ¢5, ¢7) represent the e-NFA for 71 and 75 respectively. Our new
e-NFA combines these two, where A = ({go, ¢} U Q1 U Q2, 2,9, g0, {gs}) and

* d(qo,¢) = {a5}
e 5(qf,¢) = {q5}
* 5(qf,¢) = {qr}
Additionally, § contains all the transitions of §; and d

6. r*: Let A; = (Ql,E,(Sl,qé,q}) represent the e-NFA for r. Our new e-NFA applies the kleene star rule, where
A= ({QO7qf} U Q17 Ea 5a q0, {qf}> and

* 3(qo,€) = {q0, a5}
e 3(qp€) = {ah, ar}

Additionally, § contains all the transitions of §;

2.6 Minimization of DFA

Definition 2.4 (=;). Given a language L, u = w <= Vz € ¥* uxr € L. <= wz € L, meaning ux € L and wx € L, or
ur ¢ L and wr ¢ L

=, forms an equivalent relation, meaning it is reflexive, symmetric, and transitive. Let equiv(w) denote the equivalence class
of w formed from =y. If |[{equiv(w)|w € £*}| is finite, then it forms a DFA (Q, X, 0, qo, F') where

o Q = {equiv(w)lw € =)

* qo = equiv(e)

o F = {equiv(x)lx € L}

o i(equiv(w),a) = equiv(wa)

In this DFA, we are basically grouping strings into different classes based on their behaviour, any two strings in the same
class will lead to the same state given the same continuation. The DFA formed is minimal, meaning there is no other DFA
for L with a smaller number of states. We can prove this by showing that a DFA for L. must have at least the number of
equivalence classes under =y,.

Claim: Every DFA for L must have at least the number of equivalent classes formed under =;. This is equivalent to the

statement u £y w = 5(qo, u) # 5((1(; w)

Proof. Suppose otherwise, that u Z;, w = 5((10, u) = 5((10, w). This means that there exists a smaller DFA that can place
two strings into the same state even though they were from different classes.

Then, by definition of =, there exists some string = such that uz € L and wz ¢ L or vice versa. However, 5(q0: ux) = (5(q0:uzac)7
meaning ux and wx must either be both in L, or not, hence a contradiction. O]

The intuition behind why this works is because we are finding the minimal number of classes of strings that behave
differently, if two equivalent classes behaved the same way, they would not be separate. For example, given ¥ = {a, b} and
L = {w|w ends with a}, we have two equivalent classes, the set of strings ending in a and the set of strings ending in b. a #, b
because a - € € L but b- € ¢ L, hence our DFA only needs two states as equiv(e) = equiv(b).

2.6.1 Minimization algorithm

First we need to find all distinguishable pairs of states. We say that (p, q) is distinguishable iff there exists a w such that
S(p,w) € F < 6(q,w) € F.
1. Initialise all pairs (p,q) where p € F' and q ¢ F, where they are all distinguishable pairs
2. For any a € %, if 6(p, a) and 6(g,a) form a distinguisable pair, then p and ¢ are distinguishable
3. Continue step 2 until no more distinguishable pairs can be formed, then the remaining pairs are indistinguishable

Once we have all the indistinguishable pairs, they form their own equivalence classes, if 6(p,a) = ¢, then 6(Ep,a) = Eq, where
FEp and Eq are the equivalence classes for p and gq.
Initial state is the equivalence class containing the start state, final states are all equivalence classes containing final states.

2.7 Properties of Regular languages
Theorem 2.7.1 (Pumping lemma).

Let L be a regular language, then there exists a constant n for L such that for any string w € L where |w| > n, then we can
break w into 3 strings w = xyz such that

l.y#e
2. |zy| <n
3. For all k > 0, the string 2y*z € L

Proof: Consider the DFA for a regular language L which has n states and a string w of length at least n, let gg be the initial
state and q1, o, . . . ¢, be the subsequent states after accepting the next n characters of w. Since the DFA only has n states
but we have visited n + 1 states, by pigeonhole principle there must be at least 1 state repeated. Lets call this repeated state
s, let © be the substring that ends up in the first occurence of ¢, let y be the next substring that ends up in the repeated
occurence of gs. Then let z be the rest of the string w. Since g5 = 3(q0, x) = 3((]0, xy), then Vk € N, ¢5 = 5(qo, xyk)

2.7.1 Decision problems
1. To decide if L is the empty set, check if all the final states are unreachable

2. To decide if L is X%, take the complement of the DFA and check if all the final states are unreachable

2.8 Parallel simulation of DFA

Given two DFAs, A = (Q,%,6,q0, F) and A’ = (Q',%,0', q(), F'), we can do a parallel simulation to run both DFAs.
Construct another DFA A" = (Q x Q',%,6"”, (g0, g5, F")), where 6"((¢,¢'),a) = (6(q,a),d'(¢',a)), and F” depends on the
need.

For example, if we are trying to find the intersection of two languages, then " = {(q,¢') : ¢ € F A ¢’ € F}. If we are trying
to find the union of two languages, then F” = {(q,¢') : g€ F VvV ¢ € F}.

2.9 Homomorphism

Suppose ¥ and I" are two alphabets. Suppose h is a mapping from X to I'*. Extend h to strings as follows.

h(e) =e.

h(aw) = h(a) - h(w), for any a € X, w € T*.

Above h is called a homomorphism. If L is regular then h(L) = {h(w)|w € L} is also regular. Likewise if h(L) is irregular,
then L is irregular.

2.10 Summary of proven statements
e Number of strings over any fixed finite alphabet ¥ is countable
e Number of languages over any non-empty alphabet is uncountable
e DFA is equivalent to NFA is equivalent to e-NFA is equivalent to RegLangs

e Reglang properties:

— M+N = N+M

— L(M+N) = L(M) + L(N)
-L+L=L

—(L*)* =L*

=

— € =e€

— LT =LL*=L*L

— L*=¢e¢+ LT

e If a language has n equivalence classes, it must have at least n states
e Closure properties of RegLangs:

If Ly and Lo are regular, then so is Ly U Lo
If L and Lo are regular, then so is Ly - Lo

If L, and Ly are regular, then so is Ly N Lo
If L and Lo are regular, then so is L1 — Lo
If L, and Lo are regular, then so is Ly - Lo

If L, is regular, then so is L

If L, is regular, then so is L?

If L, is regular, then so is h(L)

© NS g WD

If h(L) is irregular, then L is irregular.

2.11 Languages known to be regular or irregular
Regular:

e Strings that contain odd number of bs over {a,b}

strings that contain 00 as a substring

L = {w]| n-th symbol in w from the end is 1}.

An integer that is (+, —, €) followed by digits

{w| number of a’s in w is of form 3i + 1, for some natural number i} (Tutorial 1 Q4a)

{w|w has abaab as a substring} (Tutorial 1 Q4b)

{w|w does not contain ababba as a substring} (Tutorial 1 Q4c)

(Odd number of a’s and no b’s) or (any number of a’s followed by a b followed by even number of a’s) (Tutorial 1 Q5)

{w|w = arbrazbs . ..anb,, for some n, where a;,b; € {0,1} and ajaz...a, > biby...b,}

Set of strings that end in bba

e For a string x, let z; denote the i-th character in x. That is, x = xyz2x3...x,, where n is the length of x and each
x; € 3. Suppose L is regular. Then {x: Ir € N, |z| = 2r A z1x325...22,—1 € L} is also regular.

{wrwf|w,z € {a,b}+}

e Half(L) is regular
Irregular:

e {a™b™|m > 1}

{a'v]i < j}

{aP|pisprime}

{wew®|w € {a,b}*} (Tutorial 3 q3a)

{ww|w € {a,b}*} (Tutorial 3 ¢3b)

e {a™:m > 0 and binary representation of m has even number of bits}

3 Context Free Grammars

3.1 CFG
3.1.1 Definition
A CFG is a 4 tuple G = (V, T, P, S) where
e V is a finite set of non terminals
e T is a finite set of terminals
e P is a finite set of production rules A — v where A € V and v € (VUT)*

e S is the starting symbol, and S € V

3.1.2 Derivation

aAf = aypf if there exists a production rule of the form A — v. a = f if there is a series of zero or more production rules
that derives beta from alpha.

If S =¢ a, then o is a sentential form. Basically any string of terminals and non terminals that can be reached from S is a
sentential form.

3.1.3 Parsing

Using left most derivation, we apply the production rule on the left most non terminal. Likewise for right most derivation, we
apply the production rule on the right most non terminal.
A parse tree is generated when generating a string of non terminals from the starting symbol S. For example:

3.1.4 Linear grammar
A right linear grammar is a grammar where all production rules are of the form

A—wB,BeV,weT" or
A= wweT”

Likewise a left linear grammar is a grammar where all production rules are only to strings of terminals, or a non terminal
followed by a string of terminals.

Linear grammars are equivalent to regular expressions.

3.1.5 Ambiguous grammars

A grammar is ambiguous if there exists two distinct parse trees to get to the same string of non terminals. Some grammars
can be disambiguated by changing the production rules, but some grammars are inherently ambiguous.

3.2 PDA

A push down automata is like a finite state machine but with a stack. More formally it is defined by the 7 tuple P =
(Q» 27 Fa 57 q0, ZO» F), where

o (3, qo, F are like in a DFA

T" is the stack alphabet

Z is the only and initial symbol on the stack
e) is a transition function from @ x ¥ x I" to P(Q x I'*)

(p,7y) € 6(q,a, X) indicates that at state g, after reading input character a, and popping the top of the stack to get X, the
machine can travel to state p, and push v onto the stack. v € I'*, and we push characters from right to left. Note that we
must always pop something from the top of the stack, we cannot progress if the stack is empty.

3.2.1 Instantaneous description

We say that (q,aw, Xa) - (p,w, Ba) if (p, 8) € §(q, aw, X)

3.2.2 Language acceptance
We can either accept by final state, if
{wl|(qo,w, Zy) F* (qy, €, o) for some g5 € F'}.
or by empty stack, if
{w|(qo,w, F) F* (q,¢€,¢€) for some g € Q}.

Acceptance by final state or by empty stack is equivalent in a non deterministic PDA

3.2.3 Deterministic PDA

A deterministic PDA is just like a NPDA, but there is only one possible next move at each state, input character, and top of
stack symbol. So the transition function is from Q x ¥ x I" to Q x I'*. And if there is an epsilon transition at state ¢ and top
of stack X, then there can be no other transitions for any other input symbol a € .

A deterministic PDA is strictly weaker than a NPDA, and the language it accepts it forms the class of deterministic context
free languages. Acceptance by final state is also more powerful than acceptance by empty stack. Final state acceptance can
accept all regular languages, but empty stack can only accept a subset of final state, namely languages where for any =,y € L,
x is not a prefix of y.

3.3 Procedures

There are a few procedures that transforms grammars into simpler grammars but still express the same language

3.3.1 Generating symbols

A symbol A is generating if A =% w for some w € T*
Non generating symbols in a grammar is useles, so lets get rid of them.

1. Set all terminal symbols in the grammar to be generating
2. If there exists a production of the form A — w, where every symbol in w is generating, then A is generating.

3. Repeat step 2 until no more symbols can be added, then we can get rid of non generating symbols.

3.3.2 Reachable symbols

A symbol A is reachable if S =, aAp, for some o, € (VUT)*
Even if a symbol is generating, it may not be reachable from the starting symbol, such symbols are also useless, so lets get rid
of them.

1. S is reachable
2. If A — « and A is reachable, then all symbols in « are reachable.

3. Repeat step 2 until no more symbols can be added, then we can get rid of non reachable symbols.

3.3.3 Useless symbols

A symbol is useful only if it is reachable and generating. To get rid of useless symbols, first get rid of non generating symbols,
then get rid of non reachable symbols.

3.3.4 ¢ productions

An € production is a production rule that can lead to the empty string. We want to eliminate such productions
First we need to identify nullable symbol. A nullable symbol is one where A = €.

1. For all A — ¢, set A as nullable

2. If A — « and every symbol in « is nullable, then A is nullable

3. Repeat step 2 until no more nullable symbols can be added
Then to remove all € productions, we do the following:

1. First, designate all non terminals A where A =7, € as nullable.

2. Then, we want to remove all such productions that can lead to an empty string. For each production B — «, where «
contains one or more nullable non terminals, replace it with all possible productions B — o', which can be formed by
removing some nullable non terminals in «

If S is nullable, then the new language accepts the original language, except the empty string.

3.3.5 Unit productions

If A=¢ B, and B € V, then A =¢ B is a unit production.

To get rid of such a unit production, we need to find all non unit productions B — 7, and add A — -, and remove all
productions of the form A — C where C € V.

To do this, we need to find all unit pairs (A, B) where A =}, B

1. VA e V,(A, A) is a unit pair
2. If (A, B) is a unit pair, and B — C, then (A4, C) is a unit pair.

All unit pairs are unit productions

10

3.3.6 Chomsky normal form

Every grammar can be converted to a chomsky normal form, where all production rules are of the form A — BC or A — a,
where a € T'and A,B,C €V
To convert a grammar to chomsky normal form:

1. Remove all € productions
2. Remove all unit productions
3. Convert all productions of length greater than 2 to length 2 (only non terminals in RHS) or 1 (only terminal).

Given a production of length greater than 2, A — X; X5 ... X, we can convert it to the following set of productions:
A— Z1Bo
By — Z5B;3

Bn—l — Z’n—lZn

Z;=X; X, eV

3.4 Properties

3.4.1 Size of parse tree

Given a grammar in chomsky normal form, if the length of the longest path from root to a node is n, then the size of the
string generated is at most 271

3.4.2 Pumping Lemma

Let L be a CFL. Then there exists a constant n such that, if z is any string in L such that |z| > n, then we can write
z = uvwxy such that:

1. Jowz| <n
2. vx # €, meaing only at most 1 of v or x can be €
3. Vi > O7uviwxiy el

Proof of Pumping Lemma for CFL Given L is a CFL, WLOG, assume L # () and L # {e}. There exists a Chomsky
Normal Form G = (V, T, P, S) for L — {e}.

Let m = |V] and n = 2™, Given a string z € L of size at least 2™, there exists a path from root to leaf of at least m + 1
due to the binary tree nature of the parse tree. Consider one such path, there are m-+1 non terminals, hence by pigeonhole
principle, we have at least 1 non terminal repeated along this path.

Now consider a string z = wvwzry, where S % uAy % uvAxy ;z uvwzxy Note that A represents the subpath that starts

and ends at the repeated non terminal, so upon encountering the same non terminal at the end, we can repeatedly loop it.
Hence A % viwx®

3.4.3 Ogdens lemma

Let L be a CFL, then there exists some constant n such that for any string z where |z| > n and z € L, we can arbitrarily
mark any n characters in z to be distinguished, and split z into uvwxy such that the following will always hold:

e vwz has at most n distinguished positions
e vx has at least 1 distinguished position

o Vi e N, wwlwaly € L

11

3.4.4 Closure

e Closure under substitution.

Given a mapping between each terminal a to a CFL L,, where s(a) = L,, define s(w) as follows:
s(e) = {e}

s(wa) = s(w) - s(a)

Then Uyers(w) is a CFL

The idea is that for each terminal a, we have a grammar for L, which is G, = (V4, Ty, Pa, S.). Now whenever a is
encountered in the derivation of our new language, we replace it with S,,.

Formally, let the grammar for our new language be G’ = (V/,T’, P’, S), where

— V'is VU (UgerVs,), that is all the new non terminals including our original ones.

— T is UuerT,, that is all the new terminals, excluding the old terminals as they are being replaced with non
terminals.

— P'is Phew U (Uger P,) where Ppew is formed by replacing any terminals a in the production rules in the original
grammar with S,.
Closure under reversal
LE = {w® :w € L}, where if L is a CFL, then L% is also a CFL.

This one is quite intuitive, just reverse the production rules.

Closure under intersection with regular language

Given L is a CFL and R is a regular language, then L N R is a CFL.

This one is also quite intuitive, just do a parallel simulation between the PDA for L and the DFA for R. We only need 1
stack for the PDA.

Not closed under intersection with another CFL

Again pretty intuitive, to do a parallel simulation, you need to keep track of two stacks, this becomes a turing machine.

3.4.5 CYK

The CYK (Cocke—Younger—Kasami) algorithm is a DP algo used to test membership in the CFL
Here is the main idea:

1.
2.

5.
6.

Consider the chomsky normal form grammar for our language L

Given the string we want to test, w = a1az...a,, we determine the set of non terminals X; ; that generate the string
AiQigq1 - Q5

Base case: X ; is just the set of non terminals A — a;

Inductive case: X; ; contains all nonterminals A such that A — BC where B € X ;, and C' € X415 fori <k < j, so
B generates a;a;y1 ... a, and C generates ajy1ar42 - .- a;.

Now we can find X;

If X ,, contains S, then w € L

Fori=1tondo

Let Xi,i = {A A — ai}.
EndFor

For s =1ton-1do

Fort=1ton—sdo

Let j =1+ s.
Let X, ; = {A :A— BC,B € Xi,k,C € Xpy1,5,1 < k<]}
EndFor

EndFor
Note that in the above algorithm, X; , and X1 ; are already computed by the time X, ; is computed, since k - i and j - (k +
1) are both < j - i.

12

4 Turing Machines

4.1 Definitions
The basic model of turing machine used in this module is a 7 tuple (Q, %, T, 4, qo, B, F') where:

e (),%, T are the states, input alphabet and tape alphabet respectively
e §is a function @ xT' - Q x T x {L, R}

Qo is the initial state

B is a blank symbol where BeI' — X
e F'is a set of final states.

The input to the turing machine is usually given without any blanks. The head of the machine starts at the leftmost non
blank symbol, at every step it must write some symbol to the current cell before moving left or right.

The instantaneous description of a TM is given as the values of all cells written out, with the current state to the left of the
head, e.g. xox1...Tn_19TnTnt1 - .. Ty Blank symbols are not shown on either ends unless the head is among the blanks.
A turing machine accepts an input on the tape if

qox F* gy .
where ¢ € F,z € ¥* and o, € I'".

4.1.1 Languages and functions

A function can be computed by a turing machine if it halts on all inputs where f(z) is defined. There are many ways to
define the output of f(z), can be taken to be the non blank symbols on the tape, or there can be a specific output tape to be
written to.

e A language is recursively enumerable (RE) if a turing machine can accept the language (it does not need to halt on
inputs not in the language). It can also be shown that if a turing machine can print out all elements of the language
(regardless of order) then the language is RE.

e A language is recursive if a turing machine can accept the language and halt on inputs not in the language. It can also
be shon that if a turing machine can print out all elements of the language in lexicographic order, then the language is
recursive.

e A function is partially recursive (partially computable) if a turing machine halts on all inputs where f is defined on and
computes the output, but does not halt on other inputs

e A function is recursive (computable) if a function can compute it and halts on all inputs

4.1.2 Equivalent models

There are many modifications you can make to the basic model that remains equally as powerful
1. Stay at the current cell with an S move
2. Subroutines, like function calling
3. Multiple tapes can be simulated by using ', where each dimension represents one tape.

4. Right only infinite tape, cannot move past left boundary. A two way infinite machine can still be simulated using two
tapes, where one tape represents the right direction and another represents the left direction.

5. Non determinismm can be simulated through BFS by storing IDs separated by a special character # on a separate tape
as a queue.

4.1.3 Church Turing hypothesis

The church turing hypothesis is merely saying that any effective method on the naturals can be done by a turing machine, so
far there has not been an example of a useful algorithm that cannot be computed by a turing machine.

13

4.1.4 Codings of turing machines

A string x over {0,1}* can be given the number 1z - 1 in binary, assigning a unique natural number to every possible string.
This can be generalised to any alphabet size.
Using this coding of strings, we can assign every possible turing machine a natural number.

e Number every state, g1, 2, ... where ¢; is the start state.

e Number every tape symbol X7, X5, ...

e Assign a number to the directions, where L is D; and R is Ds.

e For every transition d(q;, X;) = (qk, Xi, D), map it to the binary string 0%, 10710%10!10™.

e Assign a unique natural number to every transition Cy, Co, . . ., then the turing machine can be encoded as C111C511...C,,

Then the turing machine M; can refer to the turing machine with the number ¢ using the string coding mentioned above,
where a leading 1 is placed in front of the code for the machine. The use of this encoding allows us to refer to machines by
number, and is very useful in proofs.

4.2 Properties of languages

e If L is recursive then L is recursive. Since L is recursive, there is a machine M that halts on all inputs, and either
accepts or rejects. We can construct M’, that also halts on all inputs, and accepts iff M rejects

e L is recursive iff L and L is RE. The forward direction is trivial, for the other direction, given that L and L is RE, there
exists M and M’ that halts on inputs in L and inputs not in L respectively. One can then construct M, that runs M
and M’ simultaneously, alternating between the two machines step by step. If M ever accepts, then M" accepts. If M’
accepts, then M" rejects.

e RE langs are closed under union, given L; U Lo, we can perform a similar simulation as above, that simultaneously
simulates both machines until one of them accepts.

e RE langs are closed under intersection. Given Ly N Ly, we accept <= both machines accept. In this scenario, we
don’t have to do a parallel simulation.

e Recursive langs are closed under union. Given L; U Lo, simulate M, then if it rejects then simulate M, we are safe
since they are guaranteed to halt.

e Recursive langs are closed under intersection. Given L N Lo, simulate M; then if it accepts, simulate My and accept if
M, accepts. Reject in all other cases.

o If L; is recursive and Lo is RE, then Ly — L; must be RE since Ly — L1 = Ly N Ly. For L; — Lo, we can only say that
its complement is RE.

e Every finite language is recursive, since you can just brute force
e Every co finite language (L is finite) is recursive, since you can still brute forceA
e If L is recursive and D is finite, then LAD is recursive, where LAD =L —-DUD — L

e If L is RE and not recursive, then there must be infinitely many inputs for M which do not halt.

4.3 Universal Turing Machine

L, = {(M,w) : M accepts w}.

This is a turing machine that can simulate any other turing machine. It uses 4 tapes: the input tape, a tape for M, a tape to
store the state of M, and a scratch tape for temporary storage. WLOG we assume w € {0,1}*

The state of M is stored as 0%, the tape for M is stored using the string encoding mentioned above, with 10 for zero and 100
for one. The head of the simulation always lies on the 1 before 07

Then this machine can simulate M on input w. At every step it searches for the transition of the form 0°10710¥10/10™, where
i = s and j is the value of the current cell (1 for zero, 2 for one, 3 for blank). The tape for the state of M can then be changed
to OF.

To write 0! to the tape for M, first mark the head with a special character *, then copy the tape for M to the scratch tape.
Upon seeing *, write 0’ instead, and copy the rest. Then copy this back into the tape for M, and set the head back to the *,
and write 1 to it. Lastly, move to the left or right depending on 0™.

14

4.4 Non RE langs
Let Lg = {w; : w; ¢ L(M;)}. This language is not RE, it is similar to russels paradox.

Proof. Suppose by way of contradiction that Ly was RE, then there exists M where L(M) = Ly. For any w, suppose
w € L(M), then w & Ly by definition. Suppose w ¢ L(M), then w € Ly by definition. In both cases, L(M) # L4, hence by
contradiction there does not exist a turing machine that accepts Ly and it is not RE O

L, isnot RE. L, = {(M,w) : w & L(M)}

Proof. Suppose by way of contradiction that L, was RE, then we have a machine M that accepts L,. Using M, we can
construct M’ that accepts Lg.

M’ on input w; extracts the code ¢ from w;, then runs M on (M;, w;). M’ accepts iff M accepts.

M’ will accept any w; that is not accepted by M;, however this is a contradiction as there cannot exist a turing machine that
accepts Lg, hence L,, cannot be RE. O

4.5 Reductions

P reduces to P, if some recursive function f behaves as follows
x € P — f(x)€P.

We say that P; <,, P>. Here P is a language, but it can be thought of as a “problem”, where the solutions to the problem is
itself a language.

1. If P is recursive, then so is P;. Intuitively you can just use the machine for P, to decide if x € Py
2. If py is RE, then so is P;. Same reasoning as above.

3. If P; is undecideable, then so is P,. Undecideable means not recursive. This follows from 1, if P, was recursive then Py
must be recursive.

4. If P, is not RE, then so is P,. Same reasoning as above.

So if we want to show some language P, is “hard” (not RE), find a P; which is known to be not RE and map every element in
P; to some element in Ps.

4.5.1 TM accepting empty set

Let Le ={M : L(M) =0} and L, = {M : L(M) # (}. We show that L,. is RE and L. is not RE.
To show that L,. is RE, we can construct a machine that accepts L,.. Our machine M on input M’ uses dovetailing to
simulate every possible input on M’ until it accepts.
For t = 0 to oo
Fori=0tot
If M(w;) accepts within ¢ steps, then accept

To show that L. is not RE, we can reduce L, to L.. Given any machine word pair (M, w), we construct M’
M (z)
For t =0 to oo
If M(w) accepts within ¢ steps then accept.
This mapping is obviously recursive.
If w & M, then M (w) never accepts and M’ also will never accept any input. Hence (M, w) € L, <= L(M" = 0)

4.6 Rice’s theorem

Given a non trivial property P about RE langs, {M : L(M) satisfies P} is undecideable. A property is non trivial if there
exists at least one RE language which does not satisfy the property and one RE language that satisfies the property. In other
words, a property is non trivial iff it is not true/false for all turing machines.
Proof: We reduce L. to Lp. WLOG assume L = () satisfies P. (Otherwise switch P and P). Suppose L is an RE language
that does not satisfy P (Meaning it is not @), let M" accept L. Define f(M) = M’ as follows:
M'(z) :
For t =0 to oc:

Fori=0to t:

15

If M(w;) accepts within ¢ steps and M" (z) accepts within ¢ steps then accept z.
If L(M) =0 (meaning M € L), then L(M') = () (meaning M’ € Lp)
If L(M) # 0 (meaning M & L.), then L(M') = L(M") = L (meaning M’ & Lp)
Hence L. <,, Lp, since L. is not recursive, we have that Lp is not recursive aka undecideable.

4.7 Undecideable problems
4.7.1 Post Correspondence Problem

The Post Correspondence Problem is an undecideable problem that states: Given two lists of strings as input, aq, as, ..., ak
and f1, B2, ..., Bk, does there exists a list of indices 1 < 4, < k,1 < n < m for some m > 0, such that o, iy, ..., 0, =
Bilvﬁlév s 7B7;7n-

For example, given [a, ab, bba] and [baa, aa, bb], a solution would be [3,2, 3, 1], since bba abbba a = bbaabbbaa = bb aa bb baa.
The Modified Post Correspondence Problem restricts the first string in the solution to some particular pair of a; and 5;
(WLOG assume «; and 7). This problem asks if there exists a list of indices 1 < i,, < k,1 < n < m for some m > 0, such
that agouy, ..., 0, = B1,8%1,. .., Bim.

We show that L, <,, MPCP <,, PCP

Proof. MPCP <,, PCP O

To show that M PCP <,, PCP, we must show that if some input has a solution, then there exists a transformation on the
inputs that have a solution in PCP. We must also show that if some transformed input has a solution in PCP, then the
untransformed input has a solution in MPCP.

Suppose we had a3, s, ...,a and B, Bs,...,Br. Then form

—_

. o, by adding * after each symbol in «;

2. pf, by adding * before each symbol in 5;

3. af = xad, B = B
4

5. B =*$

If o/, B’ has a solution in PCP, then we can just take the untransformed input as a solution, and drop «j_,, and 3;_,. This
works because now o, = oy and S = S1.

If o and $ has a solution in M PCP then when we transform the input, we are forced to use af, and 3, at the start of our
solution, and o, 41 and By, 41 at the end of our solution. Then we can freely insert the solution to the MPCP problem.

Proof. L, < MPCP O

For this proof, we will use machines that can not move to the left of the leftmost symbol and never writes a blank. we use
symbols X, Y, Z to mean any symbol in I', likewise we use p, ¢ to mean any state in). Given any M#w in L,,, we produce
the following input lists:

List « | List 8

#qow#

X X For all X €T, to construct the tape that does not surround the head
To divide each ID

gX Yp if 0(¢, X) = (p.Y, R)

ZgX | pZY if 6(¢g, X) = (p,Y, L)
q# Y p# if 6(¢, B) = (p, Y, R)
Zg# | pZY# |itd(q,B) = (p,Y,L)
XqY | ¢q if ¢ is an accepting state
Xq q if ¢ is an accepting state
qX q if ¢ is an accepting state
qH#HH# # if ¢ is an accepting state

We basically encode (M, w) as an input to MPCP. For each («, 8) pair in the center 4 rows, /3 represents the next state of .
The solution, if it exists, will contain the instantaneous descriptions of the turing machine for each step until the machine
halts. It should be trivial to see that (M,w) € L, <= (a,) has a solution for M PC'P

16

4.7.2 Ambiguous grammars

Suppose input to PCP is A = wy,...,wy and B = z1,..., 2. Let ay,...,a; be symbols of a grammar not in A or B.

S — AlB

The use of a; is to keep track of the indices used, the fact that they are in reverse order does not matter. Now it is intuitive
that if A and B can generate the same string, then there is a solution to PCP. However if they can generate the same string,
then the grammar is ambigious.

Hence G is ambiguous iff L(G4) N L(Gp) # () iff PCP has a solution to A and B.

Note that L(G4) and L(Gp) are context free. We show that L(G4) is context free, which also shows L(Gp) is context free.
Recall that G4 generates strings of the form

Wiy Wiy « v - Wi, Qg oo e Ay Ay

Where a sequence of words is followed by a sequence of indexes in reverse order. Let us build a grammar that covers all cases
which breaks this pattern.

S — ¢|C|D|E|F.

Let C cover the cases where a word follows an index, breaking the pattern.

C— EZuncieEul)is

Where ¥ represents the alphabet of the original PCP problem, and I represents the set of indices in that problem.

Then, let D cover the cases where the index do not match up with the word it should represent.

D — wiDai|A'iD1a,»

D1 — ZD1|D1]|€

Where A’ generates all strings that are not prefixes of w; and of length at most |w;|. This causes the mismatch, and after the
mismatch, we can generate any string and index we want.

Then, let E cover the cases where there are excess elements in X

E— wiEai|E1

E1 — ZEl |Z

Lastly, let F' cover the cases where there are excess indices in 1.

F— wiFai\AiFlai

Fi, —I1F ‘6

4.7.3 Further undecideable grammars
1. L(G1) N L(G2) = 0, for CFGs, obvious by letting G; = G4 and G2 = Gp
2. Universality problem: Deciding if L(G) = £*. Let G = L(G4)UL(Gg) = ¥* — (L(G4) N L(Gp)). Proving if L(G) = ©*
involves proving whether L(G4)NL(Gg) = 0.
L(G1) = L(G2), let Gy be any context free grammar and let G5 generate ¥*.
L(G) = L(R) where R is a regular expression, consequent of the universality problem.
L(G5) € L(G4), as this can allow you to decide L(G1) = L(G>).
L(R) C L(G), as this can allow you to decide L(R) = L(G).

A

4.8 Unrestricted grammar

An unrestricted grammar is kinda like a string rewriting system, however note that this module does not allow the left hand
side of a production to only contain terminals, there must be at least one non terminal. This is easily fixed by using temporary
non terminals to represent terminals, then having a single production rules mapping the temp non terminals to the terminals
they represent.
Formally, an unrestricted grammar is a 4 tuple (N, X, S, P), almost the same as a CFG but only difference is that the
production rules can be of the form

a— g.

where o € (NUX)*N(NUX)*, and g € (NUZX)*.

If we restrict |a] < ||, then the grammar is context sensitive, which is one level below turing machines in the chomsky
hierarchy, with space linear bounded turing machines being the automata equivalent.

Unrestricted grammars are strictly as powerful as turing machines, due to them essentially being string rewriting systems, any
machine word pair can be represented by an unrestricted grammar, by letting the start symbol map to the ID of the initial

state of the turing machine, and using production rules to simulate the transitions. Hence if G is an unrestricted grammar,
then L(G) is RE.

17

5 Complexity

For notions of complexity, we assume turing machines with fixed but arbitrary number of tapes with finite tape alphabet,
using begin and end markers $ surrounding the input.

5.1 Time Space complexity
5.1.1 Time complexity

We define the time complexity of a machine on an input as Timeys(x), representing the number of steps used by machine M
on input x before halting.

For non deterministic machines, use the maximum time of any path, regardless if that path is accepting.

We define M to be T'(n) time bounded if Va € X*, Timens (x) < T(|z|). We usually assume T'(n) > n.

5.1.2 Space complexity

We define the space complexity of a machine on an input as Space s (), representing the maximum number of unique cells
visited by machine M on input x across all its work tapes before halting, not counting the input/output tape.

If the machine does not halt, it is taken to be oo

We define M to be S(n) time bounded if Vo € ¥*, Space ;s (z) < S(|z)).

5.1.3 Time Space classes

e DSPACE(S(n)) = {L| some S(n) space bounded deterministic machine accepts L}.
e DTIME(S(n)) = {L| some T'(n) time bounded deterministic machine accepts L}.
e NSPACE(S(n)) = {L| some S(n) space bounded non deterministic machine accepts L}.

o NTIME(S(n)) ={L| some T(n) time bounded non deterministic machine accepts L}.

5.2 P and NP

P = {L| some deterministic turing machine time bounded by a polynomial function accepts L}

NP = {L| some non deterministic turing machine time bounded by a polynomial function accepts L}

coNP = {L|L ¢ NP}

Suppose L € NP, then we say that we can check whether x € L given a “certificate” in deterministic polynomial time.
Basically solutions to NP problems are easy to verify, but hard to solve.

For example, given a partially filled sudoku grid, it is NP hard whether there exists a solution, but given a solution to the
sudoku, it is trivial to verify whether it is a correct solution.

Proof. Suppose N is a ¢(n) time bounded NDTM accepting L, where ¢ is a polynomial.
WLOG, assume at each state, IV has exactly 2 choices to branch out to. This can be done by “normalizing” the choices, kinda
like CNF, and N is still polynomial time bounded.
Define a computable polynomial predicate P(z,y), where z is a solution to the problem and hence in L, and y is a binary
string of length at most g(|z|).
P(z,y)
Let y =v1y2. .. Ym-
If m > ¢q(]z|) then reject.
Otherwise simulate NV on x, at each step 4 choosing the first or second choice based on whether y; is 0 or 1.
Return 1 iff N accepts.
Hence Jy where |y| < ¢(|x|) such that P(z,y) =1 <= N(x) has an accepting path.. O

We call P(z,y) a “certificate” or “proof” that z € L, since y lays out the path for N to take, it is no longer non deterministic,
hence we can consider NP as a class of languages where proofs for membership can be easily verified in deterministic
polynomial time.

18

5.2.1 Reducibility

Reducibility is similarly defined for NP problems, we have the added caveat that the function doing the reduction is computable
in polynomial time.

e [; <P L, means that there exists a poly time computable function f such that © € L1 < f(z) € Lo

o [, <logspace [, means that there exists a log space bounded computable function f such that » € L; <= f(x) € Lo

Note that <P is reflexive by identity function, and transitive by function composition.

5.2.2 NP Completeness

A set L is said to be NP-complete iff it is in NP and VL' € NP, L' <P L. If the latter criteria is satisfied, then the problem
is said to be NP hard.

Hence showing that an NP complete problem is actually solvable in polynomial time by a deterministic TM proves that
P=NP.

Another result is that given an NP complete problem L, and an NP problem L', showing that L <P L’ is sufficient to show
that L’ is NP complete.

5.2.3 Some known NP Complete problems
1. Satisfiability

Given an instance of variables U, and a collection of clauses C' over U, is there an assignment of boolean values to each
variable such that every clause is true?

In this problem, the whole boolean formula is in product of sums form, meaning each clause is (AV BV C'...) and every
clause is boolean AND together. Within each clause, variables can be negated.

Every sat problem can be converted to 3 SAT, where each clause has 3 literals.
This problem was the first problem proven to be NP complete, first by showing that it is in fact in NP, and that every
problem in NP can be reduced to 3 SAT using a poly time computable function. It worked by encoding the turing
machine as boolean variables and clauses.

2. 3-Dimensional matching
Given three disjoint finite sets X,Y, Z each of cardinality n, and a set S € X x Y x Z. Does there exist a subset S’ C S
such that |S’| = n and no two elements of S’ agree in any coordinate?

3. Vertex cover

Given a graph G = (V, E) and a positive interger K < |V, is there a subset V/ C V where every vertex in G’ lies on an
edge in G and |V'| < K7

Proof. To show that vertex cover is NP complete, we first show that it is in NP. Given V, k, and V', we just need to
check that

(a) V| <k

(b) V(u,w) e E,ue V'Vwe V'
This is obviously polynomial time computable. Next we need to show that it is NP hard, to do so we show that
3SAT <P Vertex Cover.

Given a collection of variables {z1,x2,...,2,} and a collection of clauses {cy,ca,...cn}, each clause is composed of 3
literals {lj71,lj72,lj73} where 1 S] <m.

For each variable x;, we construct 2 vertices that represent x; and ~ z;, and an edge (z;, ~ x;). The idea is that we
force the vertex cover to pick 1 of the vertices, representing the boolean value of x;

19

Then for each clause {l;1,;2,l;3} , we construct a triangle, where exactly 2 vertices must be in the vertex cover.

For each clause, we connect each literal to the variable it represents, for example, given the clause xV ~ y V z, it would

look like

Now, selecting the right k£ allows us to choose exactly 2 literals in each clause and exactly 1 boolean assignment for each
variables to be in the vertex cover, we can use k = n + 2m for this.

The literal not choosen represents the literal we select to be true, since in each clause, only 1 of the literals need to be
true for the whole clause to be true. Since this literal was not choosen, then the variable that the literal is connected to
must be choosen to be in the vertex cover.

Hence if there exists a vertex cover for this graph, there must be a satisfying truth assignment to each variable for the
satisfiability problem. And given a satisfiability problem and a correct assignment of truth values to each variable, we
can simply select either z; or ~ z; to be in the cover, and for each clause the variable is connected to, select the literals
not connected to x; or ~ x;.

Hence 3SAT <P Vertex Cover, and vertex cover is NP-complete.

. Max cut

Given an undirected graph G = (V, E) and a positive integer K < |E|, is there a cut of G with size > K? A cut
partitions the vertices into two sets (X,Y), the size of the cut is the number of edges removed to form the partition.

. Independent set

Given a graph G = (V, E) and a positive integer K < |V, is there a subgraph of size > K where no vertices are adjacent?

Proof. Given a graph G = (V| E), if V/ C V is a vertex cover for G, that means that V' — V' is an independent set. To
see this, suppose {u,v} CV — V', then there cannot exist (u,v) € F otherwise one of u or v will be in V’. Hence there
exists no edges between any vertices in V.

In the other direction, if V’ is an independent set for G, then V — V' is a vertex cover. O

. Clique

Given a graph G = (V, E) and a positive integer K < |V, is there a complete subgraph of size > K? Basically finding a
subgraph of G where every vertice is adjacent.

Proof. We can reduce independent set to clique problem. Given a graph G = (V, E), then there exists an independent
set in G iff there exists a clique in G.

This is trivial, if V'’ is an independent set, then no vertices are adjacent, so in the complement of the graph, all the
vertices in V' will be adjacent to each other. O

20

7. Hamiltonian circuit

Given a graph G = (V, E), does G contain a hamiltonian circuit? i.e is there a simple circuit that goes through all
vertices exactly once?

8. Partition
Given a finite set A and a size funtion where Va € A, s(a) > 0, is there a subset A’ of A such that

Z s(a) = Z s(a).

acA’ ag A’

s(a) is given in binary for every a, so input length is proportional to [A| + . , log s(a)

9. Set cover

Given a finite set A and a number k, a collection of subsets S = {57, 5s, ..., S} whose union is A, is there a subset
S’ C S where |S’| < k such that the union is still A?

10. Traveling salesman problem
Given a complete weighted graph G = (V, E) and a bound B, does there exist a hamiltonian circuit in G of weight < B?

Weights and B are provided in binary, so length of input is proportional to |V |+ |E| +log B+ >___ . logw,

eckE

5.3 Constant improvements

Given that a language L can be accepted by some machine M that is S(n) space bounded, then there exists a machine M’
that can accept the same language with the same number of tapes in [¢S(n)] for some ¢ > 0.
The idea is that each cell of M’ represents m cells of M, so if the tape alphabet of M is I', then the tape alphabet for M’ is

I'™, so the space used by this machine is {%—‘

The same idea can be applied to time complexity, given some conditions. Our machine M must have k > 2 tapes, and must be
T'(n) time bounded such that T'(n) € O(n), i.e. lim, % = 0o0. Then we can construct M’ that is [¢T'(n)] time bounded
forc>0

The idea is to first apply the space compression so each cell takes up m cells of the original machine. Then for every step of
M’ we look at the left and right neighbours of the current cell, this gives us 3m cells of information. Since there is a finite
number of states, this can be simulated by a DFA, we can figure out whether the machine will accept, reject (including never
halting), or move out of this 3m region. This can be precomputed, so in the worst case our machine needs to take 8 steps (3
steps to read the region, 2 steps to write to the region, 3 steps to leave the region).

In one ‘basic’ step, we have simulated at least m steps of M,

5.4 Some results

DTIME(S(n)) C DSPACE(S(n)), i.e. you can not take more time than the amount of space you time, because using up 1
space requires 1 unit of time.

If Lis in DSPACE(S(n)), and S(n) > logn, then there exists a constant ¢ depending on L such that L is in DTTM E(c5(™).
Intuitively since L is S(n) space bounded, there is a finite number of states the machine can be in, so you can take ¢ to be |T|.

If L is in NTIME(T(n)), then there exists a constant ¢ depending on L such that L is in DTITM E(cT(™). Intuitively this is
just a deterministic simulation of the non-deterministic TM.

Theorem 5.4.1. Suppose Sa(n) and S1(n) are both > logn and Sa(n) is fully space constructible (uses exactly S(n) space on

all inputs n) and Sz2(n) grows faster than Si(n), i.e. lim, o g;EZ) = 0. Then there is a language in DSPACE(S2(n)) —

DSPACE(S,(n)).

N

Proof. Construct M that is So(n) space bounded, has a fixed number of tapes (at least 3), and let L denote the language
accepted by M. We show that L will not be in DSPACE(S1(n)).

M rejects all inputs of the form 1*.
M on input of the form 1¥0z:

Mark out space S2(|1¥0z|) on the work tape. This is needed to figure out how much space Sa(|1¥0z|) takes, and allows
us to reject when the simulation crosses this boundary.

Simulate M, on the same input, if the simulation attempts to use more than So(|1¥0x|) space, then reject.

21

Else if M, halts on the same input, then M accepts iff M, did not accept the input.
In the above simulation, we assume that M, uses only 2 tapes and uses the alphabet {0,1, B}. Note that M is also Sa(n)
space bounded, hence L is in DSPACE(S2(n)).

Suppose by way of contradiction that M’ is a S;(n) space bounded machine that accepts L. Then we can construct a 2 tape
machine M, that accepts L and is also S1(n) space bounded. WLOG we can assume M, halts on all inputs.
Now we try to simulate M, on M, let k be large enough such that ¢S (|1¥0x|) < So(|1¥0x|), then we know that this simulation
must complete, and M either accepts or rejects. Then M accepts 1¥0x iff M, did not, this is a contradiction as 1¥0z should
be accepted by both machines.
Thus there can not be a machine M’ that accepts L and is S; space bounded.

O

Theorem 5.4.2. Suppose Th(n) is fully time constructible and To(n),Ti(n) > (1 + €)n. Suppose that To(n) grows faster than
T1(n) by more than a log factor, i.e. lim,_ %ﬁgﬂn) =0 (because turing machine simulation is nlogn).

Then there exists a language in DTIME(Ts(n)) but not in DTIME(T(n))
The proof is very similar to space hierarchy, we just have the nlogn restriction from the universal turing machine.

Proof. Construct M that is O(T3(n)) time bounded, has a fixed number of tapes (at least 5), and let L denote the language
accepted by M. We show that L will not be in DTIM E(T}(n)).

M rejects all inputs of the form 1*.
M on input of the form 1¥0z:

Mark out T»(|1%0z|) on the work tape, so that we can count how many steps is taken. This allows us to reject when
the simulation uses more time than T5(|1%0z|)

Simulate M, on the same input, if the simulation attempts to use more than 75(|1%0z|) time, then reject.

Else if M, halts on the same input, then M accepts iff M, did not accept the input.
In the above simulation, we assume that M, uses only 2 tapes and uses the alphabet {0,1, B}. Note that M is O(T3(n))
space bounded, hence L is in DTIM E(T3(n)) by linear speedup theorem.

Suppose by way of contradiction that M’ is a T} (n) time bounded machine that accepts L. Then we can construct a 2 tape
machine M, that simulates M and accepts L and is ¢T%(n)log Ti(n) time bounded. WLOG we can assume M, halts on all
inputs.
Now we try to run M, on M, let k be large enough such that ¢T7 (|1%0z|) log T} (|1¥0x|) < T2(|1%0z|), then we know that this
simulation must complete, and M either accepts or rejects. Then M accepts 1¥0z iff M, did not, this is a contradiction as
1¥0z should be accepted by both machines.
Thus there can not be a machine M’ that accepts L and is 77 time bounded.

O

22

	Preliminaries
	DFA, NFA, Regular expressions
	DFA
	NFA
	Equivalence of DFA and NFA
	ε-NFA
	Regular expressions
	DFA to Regular Expression
	Regular Expression to ε-NFA

	Minimization of DFA
	Minimization algorithm

	Properties of Regular languages
	Decision problems

	Parallel simulation of DFA
	Homomorphism
	Summary of proven statements
	Languages known to be regular or irregular

	Context Free Grammars
	CFG
	Definition
	Derivation
	Parsing
	Linear grammar
	Ambiguous grammars

	PDA
	Instantaneous description
	Language acceptance
	Deterministic PDA

	Procedures
	Generating symbols
	Reachable symbols
	Useless symbols
	ε productions
	Unit productions
	Chomsky normal form

	Properties
	Size of parse tree
	Pumping Lemma
	Ogdens lemma
	Closure
	CYK

	Turing Machines
	Definitions
	Languages and functions
	Equivalent models
	Church Turing hypothesis
	Codings of turing machines

	Properties of languages
	Universal Turing Machine
	Non RE langs
	Reductions
	TM accepting empty set

	Rice's theorem
	Undecideable problems
	Post Correspondence Problem
	Ambiguous grammars
	Further undecideable grammars

	Unrestricted grammar

	Complexity
	Time Space complexity
	Time complexity
	Space complexity
	Time Space classes

	P and NP
	Reducibility
	NP Completeness
	Some known NP Complete problems

	Constant improvements
	Some results

